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The purpose of this study was to investigate the association between physical effort and DNA methylation in 
the promoter region of the dopamine transporter gene (DAT1). The research group included 100 athletes (mean age = 
22.88, SD = 6.35), whereas the control group were 239 healthy male volunteers matched for age (mean age = 21.69, SD 
= 3.39). Both, the control and the research group, included individuals with Caucasian origin from the same region of 
Poland. DNA was extracted from peripheral blood leukocytes using a DNA isolation kit (A&A Biotechnology, Gdynia, 
Poland). Bisulfite modification of 250 ng DNA was performed using the EZ DNA Methylation Kit (Zymo Research, 
Orange, CA, USA), according to manufacturer's instructions. The methylation-specific PCR assay was carried out in a 
Mastercycler epgradient S (Eppendorf, Germany). We observed that the level of general methylation of the CpG island 
was similar for both groups. Further exploration of individual CpG sites allowed to notice that there were significant 
differences in methylation status in specific positions. Nonetheless, there was no rule that would indicate either higher 
or lower methylation of individual sites, four of them were methylated at a higher level (positions 1, 4, 5, 7, 8, 9, 10, 11, 
12, 13, 16, 17, 18, 23, 25, 26, 27, 29 and 30), while one showed an inverse trend (position 3). More precise analysis 
with the usage of Bonferroni correction for multiple tests indicated that differences in CpG site methylation were 
mainly increased in several positions and decreased in position 3. 
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Introduction 

Physical activity is one of the most 
important elements in prevention of civilization 
diseases and diseases connected with the aging 
process. The advantages of being physically active 
are much more significant than risks connected 
with it (Jansson et al., 2015). Physical activity, 
with adequate volume and intensity, is one of the 
cheapest and most universal medicine with only 

small side effects. It can be treated as “home 
pharmacy” that has been used by many 
generations (Grzywacz and Jaroń, 2020; Tuka et 
al., 2017). 

Regular physical activity has shown to 
protect against numerous kinds of cancers in 
different populations and in various settings. It is 
well documented that a higher level of physical 
activity decreases the risk of colorectal, breast,  
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and endometrial cancer (Friedenreich et al., 2010; 
Kyu et al., 2013). There are new data suggesting 
the crucial role of exercise in prevention of other 
types of cancer. A current pooled analysis of 1,44 
million individuals allows to notice the extended 
protective effects connected with head and neck, 
esophageal, lung, kidney, blood, and bladder 
cancers without any dependence on the body 
mass index (Moore et al., 2016). Hence, it can be 
concluded that the influence of physical inactivity 
is of high importance in different cancers. Data 
from 2013 show that nearly 7% of colorectal and 
breast cancer cases worldwide occur because of 
physical inactivity, what created a total healthcare 
cost of $5.2 billion for only those two cancers 
(Ding et al., 2016). The biological mechanisms 
influencing cancer risk in connection with 
physical inactivity has been analyzed for healthy 
populations in recent randomized controlled trials 
(Campbell et al., 2012; Friedenreich et al., 2014; 
Monninkho et al., 2007; Van Gemert et al., 2013). 
DNA methylation is one of the mechanisms 
recently identified, but still poorly understood in 
relation to physical inactivity and carcinogenesis 
prevention. The process of aging and exposure to 
carcinogenic agents can dysregulate patterns of 
DNA methylation, what can provoke genomic 
instability and improper gene expression 
(Berdasco and Esteller, 2010; Boyne et al., 2018; 
Jones et al., 2015; Kochmanski et al., 2017). 

Exercise and dietary interventions, which 
are environmental stimuli, can be elements 
modifying DNA methylome at a global and gene-
specific level (Alegría-Torres et al., 2011). The 
process of hypomethylation after exercise was 
observed for both skeletal muscles (Nitert et al., 
2012; Rowlands et al., 2014; Seaborne et al., 2018) 
and blood leukocytes (Denham et al., 2015, 2016; 
Dimauro et al., 2016). Hypomethylation was 
observed in skeletal muscles after exercise 
(Bajpeyi et al., 2017; Barrès et al., 2012; Lane et al., 
2015; Seaborne et al., 2018), however, the only 
research considering DNA methylation in 
leukocytes in the same situation did not allow to 
detect any changes in DNA methylation (Robson-
Ansley et al., 2014). Considering the small number 
of publications that discuss the impact of acute 
exercise on DNA methylation in leukocytes, the 
researchers suggest an epigenetic influence 
connected with remodeling of the leukocyte 
transcriptome (Büttner et al., 2007; Connolly et al.,  
 

 
2004; Gjevestad et al., 2015; Hunter et al., 2019). 

Phenotype transmission and the  
occurrence of different diseases, both seem to be 
induced by epigenetic mechanisms, among them 
DNA methylation (Fraga et al., 2005; Gluckman et 
al., 2009; Ling et al., 2007; Ronn et al., 2008; 
Sandovici et al., 2011). The epigenetic pattern is 
mostly imprinted in early life stages, but its 
modulating potential connected with gene 
expression and environmental factors influencing 
phenotypic traits is still observed later in life 
(Rönn et al., 2013). Changes most often taking 
place in differentiated mammalian cells include 
DNA methylation, usually occurring in the 
context of CG dinucleotides (CpGs) and is 
connected with repression of genes (Bird, 2002). 
The stimuli which can provoke changes in 
epigenetic profiles can be divided into 
environmental, behavioral, psychological and 
pathological. What is also important the 
epigenetic changes are more common than 
mutations (Feinberg and Irizarry, 2010). 
Furthermore, genetic variation not connected with 
a phenotype could affect the number of variability 
of that phenotype through epigenetic 
mechanisms, among them DNA methylation. 
Regular exercise and the mechanism of its long-
lasting influence are still not well understood, 
hence many projects concentrate on cellular and 
molecular changes in skeletal muscles. Current 
knowledge about DNA methylation in human 
skeletal muscles emphasizes changes occurring in 
the epigenetic pattern as an effect of long-term 
exercise (Rönn et al., 2013). Animal models are 
applied to analyze numerous physiological and 
behavioral phenotypes in the context of 
regulatory influence of DNA methylation. What is 
important, there are proves showing that it is 
involved in neuronal and brain development 
(Watson et al., 2015; Wilson and Sengoku, 2012; 
Spiers et al., 2015) In human studies, the process 
of unbalanced methylation has been observed 
among individuals with substance dependency, 
anxiety, depression, autism, schizophrenia, and 
bipolar disorder (Grzywacz et al., 2020; Renthal 
and Nestler, 2008; Schmitt et al., 2014; Spiers et al., 
2015; Tuesta and Zang, 2014) 

Since in our project the research group 
was composed of martial arts athletes, we selected 
the area of the gene connected with dopamine 
and dopaminergic transmission to be analyzed.  
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Dopamine is the substance often considered an 
element responsible for making the so called  
“risky decisions”. Worth mentioning is also the 
“mesolimbic reward system” that mediates in 
reward psychopharmacology influenced by a 
physical effort and other factors. Nonetheless, in 
this case the brain region of the ventral tegmental 
area, where neurons of the dopaminergic system 
are situated, and the nucleus accumbens, which is 
functionally connected to it, are called the 
“pleasure center” and dopamine itself is called the 
“pleasure neurotransmitter”. Hence, when 
considering the above mentioned system, we can 
assume that it can be treated as one of the key 
determinants of starting and continuing athletic 
training. Thus, the element influencing taking up 
and continuing athletic training and possibility of 
sport success, is the interaction of genetically 
determined temperament and the 
environmentally determined character. It is also 
worth to emphasize additional, physiological 
reasons to begin studies analyzing the genetic 
mechanisms determining operations of the 
dopaminergic system in the context of physical 
effort and sport. Noticing the fact that dopamine, 
as a neurotransmitter, is also engaged in neural 
transmission, e.g. in the extrapyramidal system, 
one could argue that it could also be of 
fundamental importance to the level of motor 
coordination. Some studies on the animal model 
have noticed that in specific situations of 
dopamine stimulation deficit mammals become 
immobile (akinetic), and increased dopamine 
stimulation provokes greater mobility.    

In the context of numerous studies and 
reports, in our project we tried to consider the 
methylation process in the group of athletes 
training regularly in comparison with control 
subjects that included healthy people, who were 
not regularly engaged in physical activity.  The 
dopamine transporter DAT1 and methylation in 
the promoter region were chosen to be analyzed. 

Methods 
Participants 

The research group included 100 athletes 
(mean age = 22.88, SD = 6.35), whereas the control 
group included 239 healthy male volunteers 
matched for age (mean age = 21.69, SD = 3.39). 
Both,  the control and the research group, 
included individuals with Caucasian origin from  
 

 
the same region of Poland. The study was 
conducted among 100 Polish healthy (no prior  
history of substance dependency or psychosis) 
male combat athletes aged 22.88 ± 6.35  (MMA, n = 
23; judo, n = 40; boxing, n = 5; karate, n = 15; 
kickboxing, n = 15; wrestling, n = 2). Various 
methods were used to obtain the samples, 
including targeting national teams and providing 
information to national coaching personnel and 
athletes attending training camps. All athletes and 
controls were Caucasian to reduce the possibility 
of racial gene skewing and to overcome any 
potential problems due to population 
stratification. 
Methylation status assessment 

DNA was extracted from peripheral blood 
leukocytes using a DNA isolation kit (A&A 
Biotechnology, Gdynia, Poland) as previously 
described and stored at -20ºC. Bisulfite 
modification of 250 ng DNA was performed using 
the EZ DNA Methylation Kit (Zymo Research, 
Orange, CA, USA), according to  manufacturer's 
instructions. The methylation-specific PCR assay 
was carried out in a Mastercycler epgradient S 
(Eppendorf, Germany). 

Primer oligonucleotides were obtained 
from Genomed.pl (Warsaw, Poland). Primer 
sequences were designed using methprimer 
(http://www.urogene.orgbin/methprimer/.cgi). 
The status of the DAT1 promoter 
(ENSG00000142319) was assessed by PCR using 
primers specific to a fragment of the gene, i.e., 
DATF: 5’-GGTTTTTGTTTTTTTTATTGTTGAG-3’; 
DATR: 5’-AAATCCCCTAAACCTAATCCC-3’. 
The PCR conditions in order to amplify the 447-bp 
fragment covering 33 CpG sites in DAT1 gene 
promoter were as follows: initial denaturation 
(94°C/5 min), followed by 35 cycles 
(94°C/61°C/72°C, 25 s each step) with final 
elongation at 72°C for 5 min. The concentration of 
magnesium chloride ions was 2.5 mM. After the 
amplification assay, PCR products were subjected 
to sequencing as previously described 
(Kochmanski et al., 2017). Briefly, samples were 
verified by sequencing using the BigDye v3.1 kit 
(Applied Biosystems, Darmstadt, Germany) and 
separation by ethanol extraction using the ABI 
Prism 3130XL (Applied Biosystems, Darmstadt, 
Germany) in a 36 cm capillary in a POP7 polymer, 
using the reverse primer. 

Sequencing chromatograms were  
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analyzed using 4peaks software (Mek & Tosj, 
Amsterdam, The Netherlands). Methylation of  
cytosine was considered positive, when the 
G/A+G ratio reached at least 20% of a total signal 
(Figure 1). 
Assessment of the ability to bind transcription 
factors 

To analyze transcription binding sites for 
the DAT1 promoter region, PROMO software was 
used (http://alggen.lsi.upc.es/cgi-
bin/promo_v3/promo/promoinit.cgi?dirDB=TF_8.
3). In PROMO, for the identification of potential 
binding sites in sequences, weight matrices were  

 
constructed from known binding sites extracted  
from version 8.3 of the TRANSFAC database 
(http://genexplain.com/transfac/#section0). The 
ability of transcription factors to bind individual 
regions was assessed with different similarity 
rates i.e. 100%, 95% or 85%. 
Statistical analysis  

Data were analyzed using the  chi-
squared test, with p < 0.05 considered statistically 
significant (GraphPad Prism 5.0). Bonferroni 
correction for multiple testing was applied to 
obtain the Bonferroni critical value. 

 
 
 
 
 

 
Figure 1 

An assessment of a methylation status of individual CpG sites in the DAT1 promoter. 
(A) The representative result of the positive (top) and negative (bottom) methylation statuses; 

(B) the sequence of the analyzed DAT1 promoter. Numbers were assigned to individual sites in 
the studied region starting from 50. The methylation status of individual CpG sites was detected 

with a cut-o level at 20% of the G/A G ratio using 4Peaks software (Mek & Tosj, Amsterdam, 
The Netherlands) 
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Table 1 
Methylation status of 33 DAT1 CpG sites in sports and control group. A group of 100 athletes and 239 

control individuals were studied to compare the methylation status in indicated CpG sites.  The Chi square 
test and Spearman correlation were used. χ2(p), Chi square; OR, odds ratio; CI, Confidence Interval; R(p), 

Spearman correlation (-95%,+95%). * Bonferroni correction was applied to get the Bonferroni critical value 
(p=0.0015) 

CpG site Studied group methylation 
status (%) 

χ2(p) OR 95% CI 
(-95%,+95%) 

R rang Spearman 
R (p) 

1* sports N (100) 74% 32.80 (.00001) .232 (.138, .390) -.312 (.00001) 
control N (239) 40% 

2 sports N (100) 70% .142 (.706) 1.103 (.661, 1.845) .021 (.707) 
control N (239) 72% 

3* sports N (100) 78% 20.471 (.00001) 4.838 (2.326, 10.065) .247 (.00001) 

control N (239) 94% 
4* sports N (100) 68% 85.746 (.00001) .093 (.054, .160) -.505 (.00001) 

control N (239) 17% 
5* sports N (100) 56% 17.983 (.00002) .359 (.222, .581) -.231 (.00002) 

control N (239) 31% 
6 sports N (100) 12% 5.064 (.024) .392 (.170, .907) -,122 (.0244) 

control N (239) 5% 
7* sports N (100) 32% 25.410 (.00001) .229 (.126, .418) -.275 (.00001) 

control N (239) 10% 
8* sports N (100) 16% 18.601 (.00002) .161 (.064, .405) -.236 (.00001) 

control N (239) 3% 
9* sports N (100) 56% 14.240 (.00016) .403 (.250, .650) -.206 (.00014) 

control N (239) 34% 
10* sports N (100) 60% 22.254 (.00001) .319 (.196, .517) -.257 (.00001) 

control N (239) 32% 
11* sports N (100) 20% 23.336 (.00001) .159 (.069, .363 ) -.264 (.00001) 

control N (239) 4% 
12* sports N (100) 64% 48.398 (.00001) .179 (.108, .297) -.379 (.00001) 

control N (239) 24% 
13* sports N (100) 28% 37.290 (.00001) .126 (.059, .265) -.333 (.00001) 

control N (239) 5% 
14 sports N (100) 85% .121 (.728) .891 (.466, 1.703) -.019 (,729) 

control N (239) 83% 
15 sports N (100) 83% .071 (.789) .919 (.496, 1.705) -.015 (.790) 

control N (239) 82% 
16* sports N (100) 81% 19.601 (.00001) .293 (.167, .513) -.241 (.00001) 

control N (239) 56% 
17* sports N (100) 52% 21.523 (.00001) .321 (.197, .524) -.253 (.00001) 

control N (239) 26% 
18* sports N (100) 19% 16.239 (.00006) .228 (.106, .491) -.220 (.00005) 

control N (239) 5% 
19 sports N (100) 98% .089 (.765) .782 (.155, 3,944) -.016 (.766) 

control N (239) 97% 
20 sports N (100) 40% .293 (.588) ,876 (.542, 1,415) -.029 (.589) 

control N (239) 37% 
21 sports N (100) 66% .078 (.780) .932 (.569, 1.524) -.015 (.780) 

control N (239) 64% 
22 sports N (100) 95% .001 (.974) .982 (.337, 2.865) -.002 (.974) 

control N (239) 95% 
23* sports N (100) 44% 41.535 (.00001) .178  (.102, .310) -.351 (.00001) 

control N (239) 12% 
24 sports N (100) 70% .387 (.533) .852 (.513, 1.412) -.033 (.535) 

control N (239) 67% 
25* sports N (100) 58% 23.141 (.00001) .311 (.192, .506) -.262 (.00001) 

control N (239) 30% 
26* sports N (100) 66% 19.285 (.00001) .341 (.209, .556) -.240 (.00001) 

control N (239) 40% 
27* sports N (100) 52% 66.183 (.00001) .114 (.065, .201) -,444 (.00001) 

control N (239) 11% 
28 sports N (100) 66% .625 (.429) .821 (.503, 1.339) -.043 (.431) 

control N (239) 61% 
29* sports N (100) 36% 16,193 (.00006) .341 (.199, .583) -,219 (.00005) 

control N (239) 16% 
30* sports N (100) 32% 36.485 (.00001) .154 (.079, .298) -,329 (.00001) 

control N (239) 7% 
31 sports N (100) 6% .069 (.791) 1.139 (.432, 3.002) ,014 (.792) 

control N (239) 7% 
32 sports N (100) 56% 6.858 (.0088) 1.901 (1.171, 3.086) .142 (.0087) 

control N (239) 71% 
33 sports N (100) 66% 9.291 (.0023) 2.247 (1.326, 3.810) .166 (.0022) 

control N (239) 81% 
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Results 

We analyzed the influence of regular training 
on DAT1 promoter methylation status in 
peripheral blood leucocytes of subjects in a side-
by-side comparison with healthy individuals. We 
observed that the level of general  methylation of 
the CpG island was similar for both groups. 
Further exploration of individual CpG sites 
allowed to notice that there were significant 
differences in methylation status in positions 
shown in Table 1. Nonetheless, there was no rule 
that would indicate either higher or lower 
methylation of individual sites, four of them were 
methylated at a higher level (positions 1, 4, 5, 7, 8, 
9, 10, 11, 12, 13, 16, 17, 18, 23, 25, 26, 27, 29 and 30), 
while one showed an inverse trend (position 3). 
More precise analysis with the use of the 
Bonferroni correction for multiple tests indicated 
that the CpG site methylation was higher mainly 
in positions 1, 4, 5, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18, 
23, 25, 26, 27, 29 and 30 and lower in position 3. 

Discussion 
In the current study, we analyzed 33 CpG 

sites of the promotor region of the DAT1 gene 
among a sample group of athletes and a control 
group. The obtained data showed significant 
differences between the two groups as 
methylation changes across all sites differed. 
When comparing the control and the group of 
athletes, the latter were hypermethylated and 
some were hypomethylated. What is more, the 
ability of transcription factors to bind to chosen 
sites revealed a great number of those regulators 
of gene expression.  

One of the analyzed sites was found to be 
possible PAX5 transcription factor binding sites 
(position 3), in which the hypomethylation occurs. 
This is of great importance, as PAX5 is a 
transcription factor connected with many 
processes influencing the development of the 
nervous system. However, because of the 
shortage of analysis of DAT1 gene expression in 
our study group, we could not anticipate the 
precise role of this finding in connection with 
dopaminergic transmission. We also observed 
that both groups represented a similar general 
methylation level of the CpG islands. Interesting 
is the fact that more precise exploration of 
individual CpG sites status allowed to conclude 
about significant methylation status differences in  

 
positions shown in Table 1. Hypermethylation is 
evident in site 1 (74 vs. 40%), site 4 and 5, 7-13, 16-
18, 23, 25-27, 29, 30 in the research group.  

It is difficult to address the results of 
methylation analysis in the promoter of the DAT1 
gene among athletes, because of the fact that such 
analysis has not been conducted in any 
competitive groups of athletes. Similar research 
was conducted by Grzywacz at al. (2000) and 
indicated changes in island sites in the promoter 
of the dopamine transporter gene among 
cannabinoid dependent individuals. However, 
hypermethylation was observed only in three 
islands (positions 1, 6 and 28), and there was no 
association between endophynotype,  disease 
entity, and hypo- or hypermethylation in the 
promoter of the DAT1 gene. When observing the 
results obtained for the group of athletes we 
showed a tendency in the direction of 
hypermethylation in the research group. 
However, although we should be cautious with 
making any conclusion, we did observe decisive 
hypermethylation, which can be a promising 
condition for further research in that area and 
confirmation of the chosen direction connected 
with the area of the dopamine transporter gene.  

However, we need further studies of 
animal models with the usage of DAT1 knock-out 
animals or chromatin immunoprecipitation (ChiP) 
experiments which should be conducted to show 
which TF or other protein may bind DNA in the 
DAT1 promoter region. However, it could be 
difficult to achieve the expected results, as neural 
development and functionality are changing 
during the whole lifetime of an individual. 
Among probable TFs which may possibly bind 
the DAT1 promoted in chosen sites, SP1 can be 
found. SP1 is a transcription factor of low 
specificity that can bind a wide spectrum of target 
sequences. 
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